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Abstract

An investigation is conducted into the viabiUty of
using a generalized Conjugate Gradient-like method
as an iterative solver to obtain steady-state solu-
tions of very low-speed fluid flow problems. Low-
speed flow at Mach 0.1 over a backward-facing step
is chosen as a representative test problem. The un-
steady form of the two-dimensional, compressible
Navier-Stokes equations is integrated in time using
discrete time-steps. The Navier-Stokes equations
are cast in an implicit, upwind finite-volume, flux
split formulation. The new iterative solver is used
to solve a linear systems of equations at each step
'of the time-integxation. Preconditioning techniques
are used with the new solver to enhance the stability
and convergence rate of the solver, and are found
to be critical to the overall success of the solver.
A study of various preconditioners reveals that a
preconditioner based on the Lower-Upper Succes-
sive Symmetric Over-Relaxation iterative scheme is
more efficient than a preconditioner based on In-
complete L-U factorizations of the iteration matrix.
The performance of the new preconditioned solver
is compared with a conventional Line Gauss-Seidel
Relaxation (LGSR) solver. Overall speed-up factors
of 28 (in terms of global time,sieps required to con-
verge to a steady-state solution) and 20 (in terms of
total CPU time on one processor of a C RAY-YMP)
are found in favor of the new preconditioned solver,
when compared with the LGSR solver.

Introduction

Conventional iterative solvers like Line Gauss-

Seidel Relaxation 1 (LGSR) and the Approximate
Factorization 2 (AF) scheme have enjoyed consider-
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able popttlarity as tools for solving the large sys-
tems of simultaneous, linear equations that appear
at each time-step of an implicit time-integration
scheme. However, these conventional solvers exhibit
several documented weaknesses 3, namely, (i) con-
vergence of LGSR depends on the choice of the
relaxation parameter (under-relaxation is often re-
quired for stability), (ii) LGSR and AF encounter
a maximum time-step restriction (even in an im-
plicit formulation) in complex flow problems, and,
(iii) convergence of AF is sensitive to the time-step
employed in the time-integration. These weaknesses
hmit the applicability of these solvers, and they are
particularly inefficient when applied to 'stiff' prob-
lems (e. g. low-speed flows).

The past few years have seen a resurgence of
interest in using other methods like the Precondi-
tioned Conjugate-Gradient Method 4 (PCGM), and
its generalizations, as iterative solvers. The earli-
est instances of the application of PCGMs to fluid
flow problems are found in the works of Wong and
Hafez 5. The work in reference 5 used PCGMs to

solve the potential flow equations for calculations
of flow over transonic airfoils. Wigton et. al e used
the GMRES r algorithm to improve the robustness
and convergence of existing CFD codes. Reference 6
used GMRES to obtain efficient potential and Euler
solutions for subsonic and transonic flow over air-
foils. The work of Venkatakrishnan s has provided
positive evidence of the viability of preconditioned
GMRES for the compressible Navier-Stokes equa-
tions. Reference 8 used PCGMs to obtain viscous
solutions for subsonic and transonic flow over air-
foils.

Inspire of the efforts mentioned above, the fam-
ily of PCGMs has not attracted the full attention of
researchers working in the area of algorithm devel-
opment for linear system solvers. (i) The power of
generalized CGMs (like GMRES) has not been har-
nessed to develop a common computational tool for
low-speed or incompressible and/ ) compressible flow
-- the regime of low-speed flows is virtually unex-
plored. (ii) The issues of how and when to terminate
the preconditioned GMRES solver need to be exam-
ined. The termination criteria determines the num-



berofsub-iteratesat each global iteration (or time-
step), and directly affects the storage requirements
and computational efficiency of the solver. (iii) The
performance of preconditioned GMRES (and other
related algorithms) needs to be documented against
the performance of conventional solvers for upwind
schemes, particularly for incompressible flow prob-
lems. None of these issues has been examined in
detail in the above mentioned references 5-8, or else-
where in the literature.

This paper has endeavored to examine the is-
sues listed in the above paragraph. An attempt has
thus been made to fill a gap in the existing literature
by conducting an investigation of the applicability of
preconditioned generalized Conjugate Gradient like
methods, for solving flow problems in the low-speed
regime. This paper also serves to complement the
earlier work of the authors _, where the regime of in-
terest was transonic and hypersonic flow problems.
The success of preconditioned CGMs was clearly
demonstrated in reference 9 for compressible flow
problems. This encouraged the authors to investi-
gate the possibility of using preconditioned CGMs
for solving incompressible flow problems, with the
goal of developing a universal code for incompress-
ible and compressible flows.

A full and more eomptete description of the the-
ory will follow this Introduction in the next section.
The governing equations of fluid flow, the Conjugate
Gradient Methods, and the details of their imple-
mentation in this research will be presented. The
importance of preconditioning, and some possible
preeonditioners will be discussed. The results of
the application of the new solver to a low-speed
flow problems will be presented and compared to
results using a conventional line relaxation algo-
rithm (i.e., LGSR) on the same test problem. The
results demonstrate the effectiveness of using pre-
conditioned, generalized CGMs as iterative solvers.
The final section enumerates the conclusions drawn
from this work.

Presentation of Theory

Napier-Stokes Equations

The governing equations of compressible fluid
flow in 2-D are the Napier-Stokes equations written
as

aQ aF aG_ OF. aG,
0-7+ b_ + oy a_ + a--_ (1)

In this research, the thin-layer form of the above
equations is used, i.e. all viscous terms which in-
volve a gradient in the streamwise direction are ne-
glected. The use of the thin-layer equations is jus-
tified because the coarseness of the computational
mesh used in this research precludes the resolution
of the viscous fluxes in the streamwise direction.

The thin-layer equations are transformed from
cartesian coordinate form (z,y) to generalized (_,n)

coordinates, which results in

7 0-7+ _ + a_ = a_ (2)

where

O = Go,p_,p., peo]r ; ] : &ny - eyn_

J J ' j J

d_= _

where (_,_,_,77_ are the metrics of the transforma-
tion. In addition,

F = F(Q) = [pu,p,_+ p,puv,(_o + p)a]r

G : G(Q) : [pv,p,,v,pv2 + v, (_0 + p),,]r

p=(7-1)[peo-p(U'_v-'-)]

_%, = O, _ = at un + aav,7, _, = ctzu, I + azv n

= 2 ,u ". _- _Pr(7- 1)

1 _ 1 _/y2 1 _/_7/_al=l-b_, a2 = l +'_-j-, aa -- 3 j

The specific heat ratio, % is taken to be 1.4.
The molecular viscosity is given by #, a is the speed
of sound and ReL is the Reynolds number per unit
length. Nondimensionalization is with respect to
the freestream density and velocity. The physical
coordinates (x,y) and viscosity are nondimension-
alized by a reference length L and the molecular
viscosity of the freestream, respectively. It must be
remarked that, in this research, no correction has
been made to the compressible flow equations to
account for the incompressible effects of low-speed
flow. This is expected to affect the overall perfor-
mance of the code (i. e. slower convergence rates for
all solvers). However, the quality of the computed
solution is not affected, and this is borne out by the
excellent comparisons obtained with experimental
data. In short, the compressible flow equations are
used 'as is' for low-speed flow, and this is consis-
tent with the goal of developing a common compu-
tational tool for all regimes of flow (incompressible

and compressible.).
The governing equations are solved computa-

tionally in their integral, conservation law form, us-
ing a cell-centered finite volume formulation. In-
viscid flux terms are upwinded using Van Lear's 1°
fiu_x-splitting scheme. The thin-layer viscous fluxes
are evaluated with second order accurate central dif-
ferences.



Equation 2 can be rewritten in compact form
as

1 0q _ -R (3)
J 0t

where the right-hand-side vector is written as

aP aO ad_,
R = R(Q) : _ + o. o,7

R is called the residual, and equals to zero for a
steadystate solution. The Euler implicit discretiza-
tion of equation 3 in time gives

Aq" _ _R.+I (4)
JAr

where AQ" is the incremental change in the cell-
centered values of the vector Q between the n + 1 th
time level and the known n th time level, i.e.

/',q'_ = q"+_ - q" (s)

R '_+1 is linearized in time about the n th time level
which results in

tt

I OR\ A " -R"

where I/JAr is a block-diagonal matrix and aR is

a large, sparse, block, banded matrix.
Equation 6 can be rewritten as

V"AQ"=-R" (7)

Equation 7 represents the system of linear simul-
taneous algebraic equations that has to be solved
at each global time-step in the computation. This
system of equations can be solved by direct ma-
trix inversion; however, this requires extensive com-
puter memory and computation effort at each time
step. Iterative schemes are attractive because of
their computational efficiency and relatively mea-
ger memory requirements. In this paper, a compar-
ison is made between the efficiency of two iterative
solvers -- a conventional Line Gauss-Seidel Relax-

ation (LGSR) solver and a preconditioned general-
ized conjugate-gradient type solver. Results of com-
parisons with the Approximate Factorization (AF)
solver may be found in reference 3, but are not pre-
sented in this paper.

Generalized Conjugate Gradient Methods

Recall, that we are interested in solving the lin-
ear system of equations

V=AQ" =-R = ¢_ Ax = b (8)

The classical Conjugate Gradient Method (CGM)
was proposed by Hestenes and Steifel 4, to solve the
system Az = b, where A is a symmetric and positive
definite (SPD) matrix. The idea of using CGMs as
iterative methods was first discussed by Reid it.

The condition that A has to be an SPD ma-

trix is seemingly restrictive because it is difficult to
guarantee an SPD matrix for general fluid flow prob-
lems which incorporate the Navier-Stokes equations.
However, the method can be generalized for solving
linear systems where the coefficient matrix is not
symmetric and/or positive definite. Several gener-
alizations have been proposed in the literature, par-
ticularly for non-symmetric systems, by Saad and
Sehultz r, Young and Jea 12, and Axelsson 13 , to name
a few. The particular generalization used in this
paper is the Generalized Minimal RESidual (GM-

RES) method of Saad and SchultzL As the name
of the method suggests, GMRES seeks to mini-
mize the norm of the computed residual vector, r",
(r '_ - b - Az") at each iteration.

The GMRES method is directly applicable to
solve linear systems with non-symmetric coefficient
matrices. The generalization is effected by a two
step procedure -- the generation of a set of or-
thonormal vectors from a given initial guess using
Arnoldi's Method 14, and the solution of a minimiza-

tion problem. Arnoldi's Method 14 uses tile well
known Gram-Schmidt algorithm for computing an
orthonormal basis of vectors for the Krylov subspace

K(A, vl, k) - span{v1, Avl,..., Ak-'vl }.
It is possible to build linear system solvers for

sparse matrices, with the help of the Arnoldi pro-
cess. In order to solve the linear system Ax : b, we
calculate an approximate solution z_ of the form
zk = Zo + zk, where zo is some arbitrary initial
guess to the exact solution 2 (= A-lb). The vector
zk lies in the Krylov subspace collectively defined
by A, ro (= b- Axo) and k, i.e.,

z_ E K(A, ro, k) = span{ro, Aro,. ..,A_-t,'_),.
= span{,'o, r,, ..., ,'_}

These methods are referred to as Krylov subspace
methods.

The iterative scheme based on Krylov subspace
methods will be most successful when the iterate zk
minimizes the corresponding residual norm, Ilrk]l.
Mathematically, this is equivalent to a minimization
of I[",,11over zk c K(A, ro, k), i.e.,

minllrkl I _ mini[(b-A=k)l I (10)
z h _/,

The solution of this minimization problem forms the
second part of the GMRES algorithm.

The complete GMRES algorithm can be sum-
marized as follows:

1. For any starting vector zo, form the initial vec-
tor _o : b- A_o ; _ = 11_o11=; vl = _o/_.

2. Generate the basis of orthonormal vectors de-
fined in equation 9



3. Formtheapproximatesolution:
a) Findthevectorzk which solves the mini-

mization problem of equation 10
b) Compute zk = z0 + z/,

In summary, the GMRES method is a mini-
mization process to solve linear matrix systems like
Az = b. The minimization proceeds as a sequence
of k sub-iterations, and the minimizer is obtained
by a simple upper-trlangular solve in step 3 of the
algorithm. One major practical difficulty with GM-
RES is that as k increases, both storage and oper-
ation cost increase as O(k) and O(k2), respectively.
Hence, the number of sub-iterations has to be re-
stricted to minimize the cost of each global iteration.
This issue, which has not received much attention
in the literature, is addressed later in this paper.

Further mathematical details, implementation
techniques and convergence analyses of the method
are contained in references 3 and 8. Since this pa-

per is also concerned with convergence acceleration,
it may be remarked that the speed of convergence
of tile algorithm depends on the condition number
of the matrix A (_2(A)), and the distribution of
slngular-values of A (i.e. the spectrum of A). tc2(A)
is defined as the ratio of the maximum to minimum

singular-value of the matrix A. If _2(A) is large
and/or the spectrum of singular-values of A is wide
and scattered, A is said to be poorly conditioned,
and convergence may be very slow. Precondition-
ing is employed to improve the conditioning of the
coefficient matrix. The preconditioning technique
chosen may hence be critical to the success of any
generalized CGM used to solve linear systems of
equations.

Preconditioning Techniques for CGMs

One of the most effective iterative methods for
solving large, sparse linear systems of equations is
a combination of a generalized Conjugate Gradient
like procedure with some appropriate precondition-
ing technique. Assuming that a preconditioning ma-
trix M is used on the left of the original unprecon-
ditioned system, this involves solving the precondi-
tioned linear system

M-tAx = _I-lb ¢_ _Ax = b (11)

instead of the original system Ax = b.
The motivation for preconditioning is twofold

-- to reduce the computational effort required to
solve the linearized system of equations at each
time-step, and, to reduce the total number of time-
steps (or global iterations) required to obtain a
steady-state solution. Preconditioning will be cost-
effective only if the additional computational work
incurred for each sub-iteration is compensated for
by a reduction in the total number of iterations to
convergence -- so that the total cost of solving the
overall non-linear system is reduced.

The costs associated with preconditioning can
be enumerated as (i) Computing the precondition-
ing matrix M, (it) Matrix-vector multiplies or equiv-
alent linear system solves associated with M, and,

(iii) Additional computer storage to store M --
which may be of the order of storage requirements
for the coefficient matrix A. The selection of an 'ettl-
cient' preconditioner is motivated by the minimiza-
tion of the afore-mentioned costs, and is considered
crucial to the success of the preconditioned GMRES
algorithm.

The cheapest preconditioner is the identity ma-
trix (of appropriate rank). However, for M = 1,
the original, unprecondltioned iterative scheme is
recovered! The costliest preconditioner results when
M = A. This is equivalent to performing a direct
solver approach and inverting A to obtain z = A-lb
-- an approach which is unacceptable for the solu-
tion of large, sparse linear systems of equations. It is
apparent that a practical preconditioner lies some-
where between the two extremal choices of M - 1
and M -- A. It is also evident that 3I should be in
some sense "close" to A --so that 3I-_A is close to
the identity matrix. For effective preconditioning,

this means that the eigenstructure of A should be
close to that of the identity matrix [, i.e. A should
be well-conditioned.

For practical implementations, the 'explicit'
computation of M -1 is not advisable because (i)
Even though 3I may be sparse (corresponding to

the sparsity of A), M -1 may be a dense matrix.
Storage requirements for M-1 may thus far exceed
those for 3I, and, (it) If M is ill-conditioned (corre-
sponding to ill-conditioning of A), computation of
M -1 in computer arithmetic will be highly error-

prone.
In practice, 'explicit' preconditioning is re-

placed by an equivalent but highly effective tech-
nique called 'implicit' preconditioning, hnplicit pre-
conditioning transforms the 'explicit' problem of
forming matrix-vector products of the type M-lu
(= fi) to an equivalent 'implicit' problem of solv-
ing a linear system for fi, with M as the coefficient
matrix. This can be written as

3I-lu = fi ¢_ Mfi- u (12)

This linear system has to be solved for each sub-
iteration of the preconditioned GMRES algorithm.
Thus, any matrix M which produces easy-to-solve
(i.e., computationally efficient) linear systems of the
type Mfi = u, is a potentially acceptable precondi-
tioner.

In the light of the preceding discussions, a good
preconditioning matrix M should

i) produce an iteration matrix _1 which is better
conditioned than A, and

ii) produce easy-to-solve linear systems of tt,e form
Mfi= u.
On the basis of the above criteria, several pre-

conditioners that can be derived from the coefficient

matrix A are diagonal, block-diagonal, incomplete
L-U factorization (ILUF) and block-ILUF 1_ -- in
increasing order of computational cost. Iterative
methods used in existing CFD codes can also be

used as effective preconditioners 6. Some examples



areLineGauss-SeidelRelaxation(LGSR),spatial
ApproximateFactorization(AF), and variants of
the LUSSOR scheme of Yoon and :lameson 16.

The choice of an effective, stable preconditioner
is extremely important to the success of GMRES.
For this work, several preconditioners were investi-
gated for their effectiveness and stability. An "effec-
tive" preconditioner is defined here as one that as-
sists GMRES in obtaining rapid convergence, while
requiring a minimal overhead cost for the precon-
ditioning. A "stable" preconditioner is one that
can be successfully computed from the matrix A
(e. g. the computation of the ILUF of A may be
unstable if A is severely ill-conditioned). Diago-
nal preconditioners -- both scalar and block ver-
sions -- were found to be 'unstable' when applied
to the test case in this paper. LGS relaxation and
spatial AF, representing the use of existing flow
solvers in CFD codes as preconditioners, were found
to be 'stable' preconditioners. They were how-
ever not as 'effective' in accelerating convergence as
the LUSSOR (Lower-Upper Symmetric Successive
Over-Relaxation) or the BILUF (Block Incomplete
Lower-Upper Factorization with zero fill-in) precon-
ditioners. LUSSOR and BILUF were thus selected
as primary preconditioners for use with GMRES
in this research. The original LUSSOR scheme of
reference 16 was modified, and then incorporated in
a block version, for use as a preconditioner in this
research. Complete details of LUSSOR and BILUF
preconditioning may be found in reference 3.

_Implementation of Preconditioned GMR_E_S

In this paper, the preconditioned GMRES al-
gorithm has been implemented for solving the sys-
tem of equations represented by equation 8. The
coefficient matrix A is non-symmetric, banded and
sparse. The knowledge of the sparse, banded struc-
ture of A is exploited by storing only the five (for a
first-order left-hand-side implicit formulation) non-
zero block diagonals of the matrix -- each element
in a diagonal being a 4,4 block matrix. All matrix-
vector multiplications are performed using the algo-
rithm of Madsen et. al It, which uses only the diago-
nals of the sparse matrix to effect the multiplication.
This algorithm is used since it is Consistent with£he
storage scheme for the matrix A in this paper.

As described earlier, GMRES solves the sys-
tem of linear equations at each global iteration by
performing a number of sub-iterations within each
global iteration. For the overall efficiency of the
preconditioned GMRES solver, the number of sub-
iterations, k, needs to be 'limited', at each time-
step. One approach often adopted is to fix k 6,s,
i.e., perform a predetermined (user-specified) num-
ber of sub-iterations at each time step. A different
approach, which is used in this research, is to as-
sign a 'stopping criteria' based on the reduction in
the norm of the initial residual vector of the linear
system, i.e., to terminate the sub-iterations when
lrkll/llr0ll <_ e, where _ < 1. In practice, this trans-
ares to truncation of the orthogonalizatlon process

after k steps, in step 2 of the GMRES algorithm.
The use of a 'stopping criteria' provides a flexible,
rather than a fixed k. Thus, the issue is to choose an

(or accuracy value) for each global iteration which
will provide a globally stable and efficient iterative
scheme.

During this research, it was observed through
numerical experimentation that e can be related to
the Courant number (A) of the time-integration by
the following relation:

E=0.5 0<A<10

1 (13)
- A> I0

logl0(A 2)

The use of the above criteria for _ provides a stable
GMRES scheme for the low-speed test case in this
research. It is also valid for both the precondition-
ers (LUSSOR and Block ILUF) used with GMRES.
It should be remarked that the use of equation 13 to
specify _ as the stopping criterion successfully limits
k to values below 10, for values of A upto 1000 (as
used in this research). This criteria was also suc-
cessful when subsequently applied to the transonic
and hypersonic flow test cases of reference 9.

Some issues related to storage requirements are
now discussed. Recall that the global implicit ma-
trix has a block, banded structure with a known
sparsity pattern. All results presented in this work
involve a first-order accurate discretization of the

implicit operator, thus creating an implicit matrix
with five well-defined diagonals. Hence, for a prob-
lem size of N (i.e., N grid points), storage corre-
sponding to 5*N blocks (each of size 4*4) is required
for the implicit coefficient matrix. This storage is
required for both the solvers (GMRES and LGSR)
tested in this research. The use of precondition-
ing in conjunction with the GMRES solver neces-
sitates the storage of the corresponding precondi-
tioning matrix, M. The additional storage depends
on the particular preconditioner, and varies from N
blocks (for block diagonal and LUSSOR precondi-
tioning) to 5*N blocks (for block ILU precondition-
ing with no fill-in).

Recall, that each linear system solve with GM-
RES requires k sub-iteratlons, which translates to
k * N * 4 additional storage locations for the sub-
iterate vectors. As k becomes large (for high
Courant numbers and stiff problems), the storage
cost associated with GMRES may become signifi-
cant. In this research, it has been demonstrated
that the use of equation 13 establishes an upper
limit of k = 10. The corresponding storage of
size 40, N locations has been extracted from ex-

isting 'temporary' storage in the code, i.e., storage
is shared by GMRES and other subroutines in the
code. Hence, the need for additional storage for the
sub-iterate vectors has been successfully eliminated
in the implementation of preconditioned GMRES in
this research.



Test Results and Discussion

The problem of computing low-speed flow over
a backward-facing step was selected to demonstrate
the effectiveness of preconditioned GMRES over a
conventional Line Gauss Seidel Relaxation (LGSR)
solver. This flow problem illustrates the phenom-
ena of flow separation and recirculation in internal
flows. Extensive experimental and theoretical in-
vestigations have been performed for this flow by
Armaly at. alls.

All computations are done for laminar flow and
have been performed using the optimum vector pro-
eessing facilities on a single processor of a Cray-
YMP/832. All flow variables are second-order ac-
curate, fully-upwinded in the _ direction, and third-
order accurate, upwind-biased in the r/ direction.
All boundary conditions are first-order accurate.
Conserved variables are used for interpolation of
cell-centered values to cell-face values. The implicit

left-hand-side), global operator is discretized in a
rst-order accurate manner. This is done to assure

stability of the LGSR solver, and to save on storage
and computational costs at each global iteration.
All boundary conditions are linearlzed consistently,
and are included in the implicit coefficient matrix.

The computation is started with freestream
flow as the initial guess. The relaxation parame-
ter (w) for LGSR is set equal to one. It must be
remarked that w > 1 (i.e., over-relaxation) is not
a stable choice for the LGSR solver for the partic-
ular test ease investigated here, and w < 1 (i.e.,
under-relaxation) can only serve to slow down the
convergence rate. Alternate sweeps in both the hor-
izontal and vertical directions are used for stability
of the LGSR solver.

Excellent qualitative comparisons with experi-
mental data have been obtained for the test problem
examined. However, it is not the intent of this work
to present detailed comparisons of computational
and experimental data. Detailed code validation re-
suits have been presented for the code being used in
this research in an earlier paper 19. The results pre-
sented in this work stress the relative performance
of the solvers and preconditioners being examined,
which is consistent with the overall goals of this pa-

per.

Performance Indices for Comparisons of Solvers

A standard and widely accepted approach to

jndse the performance of linear system solvers is to
study the convergence rate provided by the particu-
lar solver. The idea is to examine the rate of conver-
gence of the global non-linear problem as a function
of the number of global iterations (or time steps or
solution updates). In this research, the compari-
son of solvers is based on the number of iterations

required to reduce the 12 norm of the residual vec-
tor (normalized by the norm of the initial residual
vector) of the non-linear problem by ten orders-of-
magnitude.

It is often argued, and apparently correctly
so, that a 2-3 order-of-magnitude reduction of the

non-linear residual is sufficient to obtain solutions
within the limits of engineering accuracy. Hence,
there seems to be no practical justification in im-
posing a seemingly strict criteria of a ten orders-
of-magnitude reduction for the residual. However,
there are several instances when this strict criteria

is required, and often necessary.

Firstly, if the initial guess to the solution is
close to the true solution, then a greater (than 2-
3 orders) reduction in the residual is necessary to
provide the correct steady-state solution. Such in-
stances arise when, say, a small perturbation (by
changing the set of boundary conditions or the grid)
is applied to a known solution (on a particular set of
boundary conditions and grid). Secondly, very high
residual reductions are often required when results
from CFD codes are used as inputs to perform opti-
mization of design parameters. In such cases, results
to engineering accuracy are unacceptable since they
may introduce large errors while evaluating sensi-
tivities of critical design parameters. Thirdly, if the
underlying non-llnear problem is stiff, then a 2-3 or-
ders residual reduction may not be sufficient, even
to provide results to engineering accuracy. This
has been clearly illustrated by the results of the
backward-facing step test case in this research.

One of the issues that can determine the suc-
cess of a solver is the amount of computational or
Central Processing Unit (CPU) time required by the
solver to perform each global iteration. The CPU
time of an algorithm can be heavily influenced by
the skills of the individual programmer. Efficient
implementations often require investments in 'real'
time and patience by the programmer. In addition,
an implementation on one particular machine may
run faster or slower on another machine, i.e., the
CPU time may be machine dependent. Matters are
further complicated by factors like compiler opti-
mization, vectorization and paraUelization of the al-
gorithm.

All the test results presented in this research
were obtained with vector implementations of algo-
rithms executed on a computer with vector process-
ing facilities. Hence, the CPU time comparisons of
the preconditioned GMRES and LGSR solvers (and
the comparisons of preconditioners) do account for
the intrinsic differences in their levels of vectoriza-
tion. Parallel and distributed computing can also
afford rapid reductions in the 'turn-around' time of
an algorithm. This research has focussed on vec-
torization issues in detail, and no efforts have been
presently made to parallelize any of the solvers or
preconditioners. It is however well accepted that
Conjugate Gradient llke algorithms can be success-
fully adapted for use with parallel architectures 2°.

It may be remarked that the number of iter-
ations to convergence is completely independent of
all the factors that influence the CPU time, and can
thus be said to reflect the true convergence charac-
teristics of a solver. The CPU time comparisons
are useful, and in conjunction with the number of
iterations comparisons, provide an estimate of the



practical utility of a solver.

Details of Numerical Computations

Armaiy et. alls have presented detailed mea-
surements of velocity distribution and reattachment
length for the incompressible flow of air downstream
of a single backward facing step in a 2-D chan-
nel. The results show that the various flow regimes
(in the Reynolds number range of 70< Re <8000),
are characterized by typical variations of separation
length with Reynolds number. The Reynolds num-
ber is based on twice the height of the inlet channel,
and two-thirds of the maximum inflow velocity at
the step. The particular test cases chosen for this
research corresponds to Re < 400, since the exper-
imentai data suggests that Re > 400 produces 3-D
variations or turbulence in the flowfield.

The numerical computations are performed on
an R-mesh with 61 and 51 points in the _ (stream-
wise) and 71 (normal) directions, respectively. The
grid is shown in Figure 1. Grid points are clustered,
both in the normal and streamwise directions, to
resolve the various viscous gradients and the reat-
tachment point of the separated flow. A freestream
Macli number of Moo = 0.1 is specified. Four differ-
ent cases with Reynolds number of Reoo = 100,200,
300 and 389 are computed. The thin-layer approxi-
mation to the Navier-Stokes equations is used. The
full Navier-Stokes terms are not included during the
computations because the coarseness of the grid in
the streamwise direction will prevent resolution of
these terms. Moreover, as will be shown later, ex-
tremely accurate physical results are obtained with
the thin-layer Navier-Stokes terms.
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Figure 1. Computational Grid

Adiabatic, no slip boundary conditions are used
on the top and bottom walls forming the boundaries
of the channel, and on the lower portion (which de-
fines the step) of the inflow boundary. For fully
developed subsonic flow at the outflow boundary,
three variables (p, u and v) are extrapolated and
the pressure is determined by fixing the stagnation
enthalpy. It must be remarked that this particular
outflow boundary condition performed considerably
better than a fixed static pressure condition at the
outflow. •+

The computational code used in this research
is designed to perform single-grid calculations only.
ttenee, it is not possible to simulate the entire exper-
imental setup of reference ts, as this would require a
minimum of two separate grids. It was thus decided
to omit the inlet channel (before the step) in the
computations, and simulate its effect by imposing a
fully-developed profile for laminar flow, at the step.

This, in turn, created a considerable challenge for
the specification of the inflow boundary condition
at the step.

According to characteristic wave theory, the
proper specification of boundary conditions for sub-
sonic inflow requires one physical boundary condi-
tion and three numerical boundary conditions to be
satisfied. Note that only one physical quantity can
be fixed, and the complete specification of a fixed
inflow (parabolic in this case) velocity profile re-
quires both components of velocity (u and v) to
be fixed. Hence, it seems unlikely that a purely
parabolic velocity profile, that will remain fixed as
the time-integration proceeds, can be maintained at
the inflow boundary.
= One approach often used in external flow cal-

culations is to specify a variation of stagnation en-
thaipy at the inflow, which in turn provides the de-
sired velocity profile. This, however, did not prove
to be a stable inflow boundary condition for this in-
ternal flow case. Severai other variations of the in-

flow boundary condition were attempted, but none
of them yielded satisfactory results. Some of these
variations are listed below. Note, that the stagna-
tion enthalpy and entropy are fixed, for all these
variations. The subscripts b and, refer to boundary
and interior values, respectively.

il Specify profile of Mach number ; t,b = v_

Specify profile of u velocity ; vb = vi
Specify profile of u velocity ; Pb = Pi

ii_ Specify profile velocity ; vb =
of total '[I i

vb _ 0 ; Ub _ Ui

vi) vt,=O;pb----pi
The problem is resolved by imposing a profile

of Reimann invariants at the inflow boundary. The
velocity profile obtained with this boundary con-
dition does vary in time, but is sufficiently stable
to simulate the incoming flow in an accurate man-
ner. Since the Reimann invariants act as a non-
refecting boundary condition 21, their use helps in
rapidly eliminating the initial transients in the so-
lution, as will be shown later by the convergence
history results.

Figure 2 shows Mach number contours obtained
from the computations on the 61.51 grid for the
Re = 389 case. The nature and size of the sep-
aration and recirculation behind the step closely
matches the physical description of the flow as ob-
tained in the experiments of Armaly at. aP s. Sim-
ilar results were also obtained for lower Reynolds
numbers of Re = 100, 200 and 300.

MAClt NI IMBER

R ANGF_'_)0, 0.1

INTERVA].-0003

Figure 2. Mach Number Contours

It should be remarked that the reattachment
point is the primary flow feature used to charac-

terize the flow in the experimental data is. For



Re = 389, the experimental results suggest a down-
stream reattachment length (XR) to step height (S)
ratio of Xn/S : 7.9_ The numerical computation
predicts XR/S : 7.95. The corresponding com-
puted values for Re : 100, 200, and 300 are 2.97,
5.09 and &58, respectively. The experimental val-
ues are 3.1, 5.2 and 6.7, respectively. A comparison
of experimental and numerical reattachment lengths
is presented in figure 3. It can be seen that the
experimental and numerical reattachment lengths
are close to each other. This represents particu-
larly good numerical solutions, in light of the fact
that onset of reattachment is more difficult to pre-
dict than onset of separation. The reattachment
point for each case is confirmed by inspecting the
velocity profiles for each case. An example set of
velocity profiles is shown in figure 4 (for Re : 389),
Velocity profiles obtained from numerical solutions
are compared with available experimental data in
figure 5 (Re : I00) and figure 6 (Re : 389). The
differences between the experimental and computed
profiles can be attributed to the excessive numerical
diffusion introduced by the Van-Leer flux-splitting
scheme used in this research. Recent tests with

the flux-splltting scheme of Liou and Steffen 22 show
much better agreement with experimental data.
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Comparisons of Solvers and Preconditioners

Figure 7 presents the convergence history com-
parisons between GMRES with LUSSOR precondi-
tioning (GMLUS), GMRES with BILUF precondi-

_n - 1o0

_ti_O_t_ _/_ _ _/i_ 05

Figure 5. Velocity Profiles for Re 100
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Figure 6. Velocity Profiles for Re : 389

tioning (GMILU) and the Line Gauss-Seidel Relax-
ation (LGSR) solver. The 'logarithm of the lz norm
of the residual' has been plotted against the 'number
of global iterations' (or time steps). It can be clearly
seen that both GMLUS and GMILU converge at a
much faster rate than the LGSR solver:

The 'correct' physical solution (i.e., the proper
reattachment point) is obtained after a six order re-
duction of the residual is achieved. The rapid reduc-
tion in the initial residual (from zero to three orders)
is a result of using the Reimann invariants at the in-
flow boundary (as discussed earlier). This rapid re-
duction represents elimination of part of the initial
transient. The maximum (or asymptotic) Courant
numbers ($) for GMLUS, GMILU and LGSR are
200, 200 and I0, respectively' "I_e max/mum ,_ for
LGSR is the value of $ above which LGSR becomes
unstable. The maximum $ for GMLUS and GMILU
is the value of A above which the number of sub-

iterations exceeds 10. Curves A (for GMLUS) and B
(for GMILU) are generated with an initial _ = 100,
with an increase to _ = 200 after 100 globai itera-
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• I { " S'Uons. The LGSR solver (Curve C) pernut an ini-
tial Courant number of_ = 10, and does not permit
any increase in the Courant number (i.e., the iter-
ates diverge at higher values of _), even after the
correct physical solution has been obtained.

GMLUS and GMILU converge in approxi-
mately 2000 global iterations. LGSR, however,
reaches a six order reduction (i.e., the correct phys-
ical solution) in 15,000 global iterations and is esti-
mated to require about 56,000 iterations (according
to convergence rate estimates) to attain a ten-order
reduction (i.e., convergence). Hence, in terms of the
number of overall global iterations to convergence,
GMRES (with either preconditioner) is significantly
(about 28 times) faster than the LGSR solver.

The use of different values of )_ for the pre-
conditioned GMRES and LGSR solvers may raise
some question about the 'fairness' of the conver-
gence rate comparisons, particularly since compar-
atively higher values of )_ are used with precondi-
tioned GMRES. The superior convergence rate of
the preconditioned GMRES solver can be attributed
to two factors -- the higher "allowed" values of )t,
and the use of preconditioning. The role of pre-
conditioning in accelerating convergence can be de-
termined by using preconditioned GMRES at the
same )_ as the LGSR solver the result is that
preconditioned GMRES continues to have a supe-
rior convergence rate than the LGSR solver, al-
though the speed-up factor is reduced. In the ab-
sence of any preconditioning, it was observed that
the GMRES solver requires considerably more sub-
iterations (than the upper limit often sub-iterations
with preconditioned GMRES) to provide an overall
stable iterative scheme (even at low Courant num-
bers of order one). The unpreconditioned GMRES
is thus impractical as a solver at low Courant num-
bers, and is unstable at high Courant numbers.

It must be remarked that the use of precondi-
tioning enables the GMRES solver to accept higher
values of A than those "allowed" by the LGSR
solver. It is hence only prudent to take advantage
of the increased stability afforded by the use of pre-

conditioning, and increase the convergence rate of
the preconditioned GMRES solver by using large
Courant numbers. The maximum speed-up is thus
obtained by using the maximum allowable values
of _. The preconditioned GMRES solver can ac-
cept even higher values of the Courant number than
those used in this research, but this requires an in-
crease in the number of sub-iterations (and hence,
increase in the storage and CPU time per time-
step), without any appreciable increase in the over-
all convergence rate. The choice of )_ is thus influ-
enced by the need to obtain the best computational
efficiency with the preconditioned GMRES solver,
and by the need to limit the storage for the sub-
iterates (as discussed earlier).

The CPU time comparison of the solvers is
shown in figure 8. The superior efficiency of GMLUS
over GMILU and LGSR is seen in this comparison.
GMLUS and GMILU require 750 and 3750 seconds,
respectively, to converge to a steady-stale solution.
The reason for this difference in CPU times is that
the Block Incomplete L-U Factorization (BiLUF)
preconditioner used in the GMILU solver requires
(partially vectorized) computation of the 'L' and 'U'
factors at each global iteration (set-up cost), and
subsequent forward and backward (scalar) solwzs
witl_ the 'L' and 'U' factors at each sub-iteration.
The block-LUSSOR preconditioner used in the GM-
LUS solver requires virtually no set-up time, and in-
volves two (partially veetorized) block'dlagonal in-
versions across the domain at each sub-iteration s .

This huge difference in computational overhead is
the reason why GMILU (using BILUF) requires al-
most five times as much CPU time as GMLUS (us-
ing LUSSOR). The LGSR solver is again extremely
slow in terms of total CPU time, as it was in terms
of number of iterations. LGSR is estimated to re-

quire about 15,000 seconds of CPU time for conver-
gence. Thus, LGSR requires about 20 times more
CPU time than that required by GMLUS.
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One of the goals of this research is to identify
stable and efficient preconditioners for the GMRES



algorithm,forusewith theNavier-Stokesequations.
Note,that the 'number of iterations' comparison
shows that both the LUSSOR and BILUF preeon-
ditioners are stable, and are equally effective in con-
verging to the steady state. The CPU time compar-
ison shows that the use of LUSSOR preconditioning
can afford considerable gains in CPU time over the
use of the BILUF preconditioner, while maintaining
a competitive convergence rate.

The CPU time comparisons reveal that the
speed-up factors with the LUSSOR preeonditioner
are much higher than those for the BILUF precon-
ditioner. The major reason for this difference may
be the lack of vectorizability of the BILUF precon-
ditioner. The CPU time for the BILUF precondi-
tioner can be reduced by reusing the %' and 'U'
factors over a (user fixed) number of global itera-
tions. This translates to performing the incomplete
LU decomposition only every ith iteration, and then
reusing the incomplete LU for the next (i- 1) global
iterations. This greatly reduces the overheadcost of
computing the BILUF preconditioner at each time-
step, and makes BILUF more competitive in terms
of CPU time.

A thorough mathematical analysis of the com-
peting solvers in this paper could provide an in-
depth explanation of why one solver or precondi-
tioner is better than another. Such an analysis
would require a detailed eigenvalue analysis of each
iterative scheme. Unfortunately, it is practical to
do such an analysis only for small matrices, as may
be encountered in 1-D probtems or in 2-D problems
with very coarse meshes. A coarse mesh for the test
problems of this paper could be adopted for this
purpose, but then there is no theory to provide a
one-on-one correspondence between eigenvalues for
a coarse and fine mesh.

It is possible to obtain estimates of extremal
(maximum and minimum) eigenvalues for the GM-
RES solver 2s. However, the usefulness of such es-
timates is limited and questionable since a) the es-
timates may not be accurate, b) the estimates are
not available when GMRES is preconditioned, and,
c) extremal eigenvalues may provide an accurate
condition number estimate, but more information
(about the distribution of interior eigenvahes) is
required to judge the effectiveness of any particu-
lar preconditioner. Thus, even though a complete
eigenvalue analysis is desirable to fully explMn the
differences in convergence rates of the solvers, it
is impractical for the problem being tested in this
research. The development of cheap and accurate
methods to perform such eigenvalue analyses could
serve as a good source of future work.

Conclusions

The applicability of the preconditioned GM-
RES solver to low-speed (or incompressible) flows
has been demonstrated by computing the incom-
pressible flow over a backward facing step. The
new solver performs with considerable success when
compared to a conventional Line Gauss-Seidel Re-

laxation solver. Remarkable speed-urns in conver-
gence rate are afforded by the new solver. When
the 'number of iterations to convergence' is used as a
comparison criterion, both the preconditioned GM-
RES solvers (using LUSSOR and BILUF precon-
ditioners, respectively) are approximately 28 times
faster than the LGSR solver, for the backward-
facing step test case. For 'CPU time to convergence'
as a comparison criterion, GMRES with LUSSOR
preconditioning is 20 times faster than the LGSR
solver.

This research establishes that the LUSSOR

(Lower Upper Symmetric Successive Over Relax-
ation) scheme of Jameson and Yoon 18 can be sue-
cessfully used as a preconditioner for the GMRES
solver, for incompressible flow applications. The
modified, block LUSSOR scheme used in this re-
search outperforms the more popular precondition-
ers based on incomplete factorization(s) of the iter-
ation matrix e.g. BILUF (Block Incomplete Lower-
Upper Factorization with zero fill-in). This rein-
forces the findings of reference z, where the superi-
ority of the LUSSOR preconditioner was established
for compressible (transonic and hypersonic) flows.

The abihty of the LUSSOR preconditioner to
be as effective in accelerating convergence as the
BILUF preeonditioner is a significant finding related
to the development of preconditioners. BILUF has
been one of the most popular preconditioning tech-
niques used by researchers working with conjugate-
gradient methods. The present work has shown that
the LUSSOR technique can match BILUF in stabil-
ity and effectiveness, and is considerably more effi-
cient in terms of the overhead costs associated with
the preconditioning effort.

One of the major issues raised in context with
methods which require sub-iterations to solve lin-
ear systems is the stopping criteria used to termi-
nate the sub-lterations. The development of a uni-
formly applicable stopping criteria for a variety of
flow phenomena represents an important step in us-
ing preconditioned GMRES as a universal solver.
A method for selection of a stopping criteria is ob-
tained in this research. The criteria is based on the
Courant number of the global iteration, and can be
easily automated for different problems. The crite-
ria is based on empirical evidence, but works well
for the incompressible flow test case in this research
(the same criteria also worked equally well for com-
pressible flow problems of reference 9).

The success of the preconditioned GMRES
solver in accelerating convergence for low-speed
flows has been clearly demonstrated. The LUS-
SOR scheme has been identified as a computation-
ally cheap, yet effective preconditioner. A uniform
stopping criteria for the GMRES solver has been de-
veloped. All the major results of this research, when
combined with the results of reference 9, serve as a
significant step towards the development of a univer-
sal flow solver for compressible and incompressible
flow problems.
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